

MR 1-9 Storm Drainage Summary

Miller Residence

7238 SE 32nd Street Mercer Island, WA 98040

6,155 SF (NEW & REPLACED Impervious)

September 16, 2020

Co-authored by Stephenie Seawall Duffy Ellis, P.E.

<u>General:</u>

This site's new and replaced impervious area is ABOVE <u>5,000</u> sf, site is subject to minimum DOE requirements MR1-9 identified below.

MR1 = Preparation of Storm Water Site Plans	See C2.0 Drainage Plan
MR2 = Construction Storm Water Pollution Prevention Plan	See C1.0 TESCP in plan set.
MR3 = Source Control of Pollution	See C1.0 for erosion control measures recommended to mitigate erosion and sediment discharge from site during construction phase.
MR4 = Preservation of Natural Drainage Systems and Outfalls	Drainage patterns are not being altered. 100% infiltration is proposed due to presence of advanced outwash sandy receptor soil.
MR5 = On-site Stormwater Management	100% infiltration is proposed for all impervious surfaces. See plans for locations. See WWHM continuous model infiltration calculations in appendix of this report.
MR6 = Runoff Treatment	N/A: PGIS area = 2,262 SF, less than the threshold of 5,000 sf for runoff treatment

MR7 = Flow Control	N/A – 100% infiltration is proposed.
MR8 = Wetlands Protection	N/A – no wetlands in vicinity
MR9 = Operations and Maintenance	N/A – Annual cleaning of infiltration catch basins recommended to help maintain long term performance of infiltration.

Background:

A 2-story house is proposed on this lot to replace the existing house. This residential lot is located in the northwestern quadrant of Mercer Island and is situated between First Hill Park and Mercerdale Park. Subject redevelopment project consists of demolishing the existing house and detached garage including removal of the existing circular driveway. Architect for the house is Rick Jones & Associates. The Builder is RKK Construction.

The site and area slope toward the west at an average grade of roughly 3%. Our storm design plan proposes all stormwater from roof and driveway discharge into one of two drywells, both sized for 100% infiltration using WWHM. We discuss this BMP in the table "MR5 On-site Stormwater Management" section below. See WWHM sizing reports attached to this drainage summary.

Soils and Infiltration Feasibility:

The receptor native soils are characterized as medium dense, advanced outwash. Outwash soils are typically well graded and sandy with void space to allow transmission of water. See the Infiltration Evaluation by Earth Solutions NW, August 2020 for full read. They visited the site, sampled two test pits and one shallow boring in July 2020. They performed a PIT test with a healthy 29 inch/hour rate and recommend a design rate of 9.7"/hour.

MR5 = On-site Stormwater Management

The List Approach (using List #2) selection process was applied to site to evaluate feasibility of BMP's (reference 2019 DOE Manual):

Lawn and Landscaped Areas:

 Post-Construction Soil Quality and Depth in accordance with BMP T5.13 in Chapter 5 of Volume V of the DOE Manual. Compost-Amended Soil is required and proposed.

MR 5 Roof Surface BMP Evaluation:

- Full Dispersion: Infeasible due to lack of 100 LF flowpath
- Downspout Full Infiltration:
 Proposed
 Sized using WWHM using the following:
 Design infiltration rate: 9.7"/hour
 North drywell: 2,500 sf of roof
 South drywell: 4,500 sf of roof and driveway

The balance of the BMP list order not evaluated given full infiltration is selected

MR 5 Driveway Surface BMP Evaluation:

- Full Dispersion: Infeasible due to lack of 100 LF flowpath
- Permeable Pavement: Not advised due to fact the new driveway (PGIS) substantially overlaps the existing driveway (ex. PGIS). This is a categorical exemption per DOE SWES Table D9.1.
- **Bioretention:** Our opinion is infiltration is the optimal BMP due to presence of advanced outwash receptor soils.
 - Sheet Flow Dispersion / Concentrated Flow Dispersion: The flowpath requirement cannot be met

APPENDIX

Attachments

- Impervious Area Spreadsheet
- DOE <u>Flowchart for Determining Requirements for New Development</u> pointing to redevelopment
- DOE <u>Flowchart for Determining Requirements for Re-Development</u> showing MR1-9
- Infiltration Evaluation, Earth Solutions NW, August 2020
- WWHM infiltration drywell sizing reports
 - North drywell
 - South drywell

Page 4 of 3 MR1-9 Drainage Report 7238 SE 32nd Street Mercer Island, WA 98040 9/16/2020 CES #1941

Impervious Area Spreadsheet		
Miller Residence - 7238 SE 32nd Street, Mercer Island, WA 98040		
Gross Site area	16,128	sf
	0.370	acres
Evisting Imponuious Aroa to be demolished		
Existing impervious Area to be demolished	7 4/0	- 6
Existing Impervious Area to be demolished	/,469	ST
total existing, to be demolished =	7,469	sf
Existing Impervious Area to remain		
Existing Impervious Area to remain	396	sf
total existing, to remain =	396	sf
total existing =	7,864	sf
Proposed Impervious Area		
House Roof	3,359	sf
Exposed Patio	534	sf
Exposed Driveway	2,262	sf
total on-site (new + replaced) proposed =	6,155	sf
total new impervious =	(1,314)	sf
total new + replaced + remaining impervious =	6,551	sf
PGIS =	2,262	sf

Figure I-2.4.1 Flow Chart for Determining Requirements for New Development

⁷²³⁸ SE 32nd Street Mercer Island, WA 98040

2014 Stormwater Management Manual for Western Washington

Volume I - Chapter 2 - Page 37

Figure I-2.4.2 Flow Chart for Determining Requirements for Redevelopment

16,128 sf site area (1,314) sf new impervious area 6,115 sf new + replaced impervious area

⁷²³⁸ SE 32nd Street Mercer Island, WA 98040

2014 Stormwater Management Manual for Western Washington

WWHM2012

PROJECT REPORT

north

Miller Residence 7238 SE 32nd Street Mercer Island, WA 98040

north drywell size result: minimum 8.7' x 8.7' x 4'-depth

General Model Information

Project Name:	1940 north drywell
Site Name:	Miller Residence
Site Address:	7238 SE 32nd Street
City:	Mercer Island
Report Date:	9/15/2020
Gage:	Seatac
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	100 Year

Mitigated Land Use

Basin 1 Bypass:	No	
GroundWater:	No	
Pervious Land Use	acre	
Pervious Total	0	
Impervious Land Use ROOF TOPS FLAT	acre 0.057	
Impervious Total	0.057	2,500 st north roof
Basin Total	0.057	
Element Flows To: Surface Gravel Trench Bed 1	Interflow Gravel Trench Bed 1	Groundwater

Mitigated Routing

Gravel	Trench Bed 1	
0.0.0		

Bottom Length:	8.67 ft.	drywell size:
Bottom Width:	8.67 ft.	8 7' x 8 7' x 4'-storage
Trench bottom slope 1:	0 To 1	
Trench Left side slope 0:	0 To 1	
Trench right side slope 2:	0 To 1	
Material thickness of first layer:	6	
Pour Space of material for first layer:	0.4	
Material thickness of second layer:	0	
Pour Space of material for second layer:	0	
Material thickness of third layer:	0	
Pour Space of material for third layer:	0	
Infiltration On		design infiltration rate
Infiltration rate:	29	= 9.7 in/hr
Infiltration safety factor:	0.334 🔪	
Wetted surface area On		
Total Volume Infiltrated (ac-ft.):	8.755	100% of 100 vr event
Total Volume Through Riser (ac-ft.):	0	infiltrated
Total Volume Through Facility (ac-ft.):	8.755	Innitiated
Percent Infiltrated:	100	
Total Precip Applied to Facility:	0	
Total Evap From Facility:	0	
Discharge Structure		
Riser Height: 4 ft.		
Riser Diameter: 10 in.		
Element Flows To:		
Outlet 1 Outlet 2		

Gravel Trench Bed Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.001727	Ó.00000Ò	0.000	0.000
0.0556	0.001727	0.000038	0.000	0.016
0.1111	0.001727	0.000077	0.000	0.016
0.1667	0.001727	0.000115	0.000	0.016
0.2222	0.001727	0.000154	0.000	0.016
0.2778	0.001727	0.000192	0.000	0.016
0.3333	0.001727	0.000230	0.000	0.016
0.3889	0.001727	0.000269	0.000	0.016
0.4444	0.001727	0.000307	0.000	0.016
0.5000	0.001727	0.000345	0.000	0.016
0.5556	0.001727	0.000384	0.000	0.016
0.6111	0.001727	0.000422	0.000	0.016
0.6667	0.001727	0.000461	0.000	0.016
0.7222	0.001727	0.000499	0.000	0.016
0.7778	0.001727	0.000537	0.000	0.016
0.8333	0.001727	0.000576	0.000	0.016
0.8889	0.001727	0.000614	0.000	0.016
0.9444	0.001727	0.000653	0.000	0.016
1.0000	0.001727	0.000691	0.000	0.016
1.0556	0.001727	0.000729	0.000	0.016
1.1111	0.001727	0.000768	0.000	0.016
1.1667	0.001727	0.000806	0.000	0.016
1.2222	0.001727	0.000844	0.000	0.016

0.016
0.016
0.016
0.010
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.010
0.016
0.016
0.016
0.016
0.016
0.016
0.010
0.016
0.016
0.016
0.016
0.016
0.010
0.016
0.016
0.016
0.016
0.016
0.010
0.016
0.016
0.016
0.016
0.016
0.016
0.010
0.016
0.016
0.016
0.016
0.016
0.016

4.5000	0.001727	0.003109	1.546	0.016
4.5556	0.001727	0.003148	1.630	0.016
4.6111	0.001727	0.003186	1.709	0.016
4.6667	0.001727	0.003224	1.785	0.016
4.7222	0.001727	0.003263	1.858	0.016
4.7778	0.001727	0.003301	1.929	0.016
4.8333	0.001727	0.003340	1.996	0.016
4.8889	0.001727	0.003378	2.062	0.016
4.9444	0.001727	0.003416	2.125	0.016
5.0000	0.001727	0.003455	2.187	0.016

Mitigated Schematic

WWHM2012

PROJECT REPORT

south

Miller Residence 7238 SE 32nd Street Mercer Island, WA 98040

south drywell size result: minimum 11.7' x 11.7' x 4'-depth

General Model Information

Project Name:	1940 south drywell
Site Name:	Miller Residence
Site Address:	7238 SE 32nd Street
City:	Mercer Island
Report Date:	9/15/2020
Gage:	Seatac
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	100 Year

Mitigated Land Use

Basin 1 Bypass:	No	
GroundWater:	No	
Pervious Land Use	acre	
Pervious Total	0	
Impervious Land Use ROOF TOPS FLAT	acre 0.103	
Impervious Total	0.103	4,500 sf south roof + driveway
Basin Total	0.103	
Element Flows To: Surface Gravel Trench Bed 1	Interflow Gravel Trench Bed 1	Groundwater

Mitigated Routing

Grave	Trench	Bed 1
-------	---------------	-------

Bottom Length:		11.67 ft.	drywell size:
Bottom Width:		11.67 ft.	11 7' x 11 7' x <i>1</i> '-storage
Trench bottom slope 1	:	0 To 1	
Trench Left side slope	0:	0 To 1	
Trench right side slope	2:	0 To 1	
Material thickness of fir	st layer:	6	
Pour Space of material	for first layer:	0.4	
Material thickness of se	econd layer:	0	
Pour Space of material	for second layer:	0	
Material thickness of th	ird layer:	0	
Pour Space of material	for third layer:	0	
Infiltration On			design infiltration rate
Infiltration rate:		29	= 9.7 in/hr
Infiltration safety factor:	:	0.334 🔪	
Wetted surface area Or	n		
Total Volume Infiltrated	l (ac-ft.):	15.974	100% of 100 vr. event
Total Volume Through	Riser (ac-ft.):	0	infiltrated
Total Volume Through	Facility (ac-ft.):	15.974	Initiated
Percent Infiltrated:			
Total Precip Applied to	Facility:	0	
I otal Evap From Facilit	iy:	0	
Discharge Structure			
Riser Height:	<u>4 ft.</u>		
Riser Diameter:	10 in.		
Cutlet 1			
Oullet I			

Gravel Trench Bed Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.003	0.000	0.000	0.000
0.0556	0.003	0.000	0.000	0.030
0.1111	0.003	0.000	0.000	0.030
0.1667	0.003	0.000	0.000	0.030
0.2222	0.003	0.000	0.000	0.030
0.2778	0.003	0.000	0.000	0.030
0.3333	0.003	0.000	0.000	0.030
0.3889	0.003	0.000	0.000	0.030
0.4444	0.003	0.000	0.000	0.030
0.5000	0.003	0.000	0.000	0.030
0.5556	0.003	0.000	0.000	0.030
0.6111	0.003	0.000	0.000	0.030
0.6667	0.003	0.000	0.000	0.030
0.7222	0.003	0.000	0.000	0.030
0.7778	0.003	0.001	0.000	0.030
0.8333	0.003	0.001	0.000	0.030
0.8889	0.003	0.001	0.000	0.030
0.9444	0.003	0.001	0.000	0.030
1.0000	0.003	0.001	0.000	0.030
1.0556	0.003	0.001	0.000	0.030
1.1111	0.003	0.001	0.000	0.030
1.1667	0.003	0.001	0.000	0.030
1.2222	0.003	0.001	0.000	0.030

1.2778	0.003 0.003	0.001 0.001	0.000 0.000	0.030 0.030
1.4444	0.003	0.001	0.000	0.030
1.5556	0.003	0.001	0.000	0.030
1.6667	0.003	0.002	0.000	0.030
1.7778	0.003	0.002	0.000	0.030
1.8889	0.003	0.002	0.000	0.030
2.0000	0.003	0.002	0.000	0.030
2.0556 2.1111	0.003 0.003	0.002 0.002	0.000 0.000	$0.030 \\ 0.030$
2.1667 2.2222	0.003 0.003	0.002 0.002	0.000 0.000	0.030 0.030
2.2778 2.3333	0.003 0.003	0.002 0.002	0.000 0.000	0.030 0.030
2.3889	0.003	0.003	0.000	0.030
2.5000	0.003	0.003	0.000	0.030
2.6111	0.003	0.003	0.000	0.030
2.7222	0.003	0.003	0.000	0.030
2.8333	0.003	0.003	0.000	0.030
2.8889	0.003	0.003	0.000	0.030
3.0000 3.0556	0.003	0.003	0.000	0.030
3.1111 3.1667	0.003 0.003	0.003 0.004	0.000 0.000	$0.030 \\ 0.030$
3.2222 3.2778	0.003 0.003	0.004 0.004	0.000 0.000	0.030 0.030
3.3333 3.3889	0.003 0.003	0.004 0.004	0.000 0.000	0.030 0.030
3.4444 3.5000	0.003 0.003	0.004 0.004	0.000 0.000	0.030 0.030
3.5556	0.003	0.004	0.000	0.030
3.6667	0.003	0.004	0.000	0.030
3.7778	0.003	0.004	0.000	0.030
3.8889	0.003	0.004	0.000	0.030
4.0000	0.003	0.004	0.000	0.030
4.0000	0.003	0.005	0.115	0.030
4.1007	0.003	0.005	0.835	0.030
4.2778 4.3333	0.003	0.005	1.067	0.030
4.3889 4.4444	0.003 0.003	0.005 0.005	1.355 1.458	0.030 0.030

4.5000	0.003	0.005	1.546	0.030
4.5556	0.003	0.005	1.630	0.030
4.6111	0.003	0.005	1.709	0.030
4.6667	0.003	0.005	1.785	0.030
4.7222	0.003	0.005	1.858	0.030
4.7778	0.003	0.006	1.929	0.030
4.8333	0.003	0.006	1.996	0.030
4.8889	0.003	0.006	2.062	0.030
4.9444	0.003	0.006	2.125	0.030
5.0000	0.003	0.006	2.187	0.030

Mitigated Schematic

August 11, 2020 ES-7397

Earth Solutions NW LLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

RKK Construction, Inc. 3056 – 70th Avenue Southeast Mercer Island, Washington 98040

- Attention: Mr. Jason Koehler
- Subject: Infiltration Evaluation Proposed Single-Family Residence Reconstruction 7238 Southeast 32nd Street Mercer Island, Washington
- Reference: Terrane, Inc. Topographic & Boundary Survey, dated January 2020

Rick Jones & Associates, Inc. Preliminary Architectural Plans, dated June 16, 2020

Washington State Department of Ecology 2014 Stormwater Management Manual for Western Washington (2014 Manual)

Kathy G. Troost and Aaron P. Wisher Geologic Map of Mercer Island, Washington, October 2006

United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Online Web Soil Survey (WSS) resource

Dear Mr. Koehler:

As requested, Earth Solutions NW, LLC (ESNW), has prepared this letter for the subject project. This letter was prepared in general accordance with the scope of services outline in our proposal dated June 24, 2020 and authorized by you on June 25, 2020. A summary of the subsurface exploration and an infiltration evaluation in general accordance with the 2014 Manual are provided in this letter.

Project Description

The subject site is located north of the intersection between Southeast 32nd Street and 73rd Avenue Southeast, in Mercer Island, Washington. The approximate project area location is illustrated on Plate 1 (Vicinity Map). The property is comprised of one tax parcel (King County Parcel No. 531510-0775), totaling roughly 0.37 acres. Per the referenced survey, the existing topography is relatively level, with less than three feet of elevation change across the site.

We understand existing single-family improvements will be removed, and a new single-family residence and related improvements will be constructed. Stormwater will be managed using infiltration BMPs where feasible.

Subsurface Conditions

An ESNW representative observed, logged, and sampled two test pits and one shallow boring (using hand tools) on July 13, 2020. The test pits were advanced within the probable infiltration areas using a trackhoe and operator provided by the client. The field exploration was completed to evaluate soil conditions, classify site soils, and characterize the presence of groundwater or soil mottling. The approximate test locations are depicted on Plate 2 (Subsurface Exploration Plan). The information provided in this section is intended as a general overview of soil and groundwater conditions; please refer to the attached exploration logs for more detailed descriptions of conditions encountered at each test location.

Underlying about six inches of topsoil and roughly three to four feet of silty sand (USCS: SM) overburden, the native soil was comprised largely of free-draining gravel (USCS: GW or GP) to the maximum exploration depth of approximately eight feet below the existing ground surface (bgs). The in-situ density of the native soil was characterized mainly as medium dense, and caving was not observed at the test locations.

The referenced geologic map resource identifies glacial till (Qvt) as the primary geologic unit underlying the site. Based on our field observations, the native soil encountered at depth at the test locations is consistent with advance outwash (Qva), which is mapped nearby and east of the site. It is possible that the glacial till "cap" is relatively thin across the site and is represented by the silty sand overburden encountered at the test locations.

Groundwater seepage was not observed during the July 2020 subsurface exploration. It should be noted that seepage rates and elevations fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the winter, spring, and early summer months.

Infiltration Evaluation

In-situ testing was completed in accordance with the small-scale Pilot Infiltration Test (PIT) procedure, as outlined in Chapter 3 of Volume III of the referenced 2014 Manual. The testing was completed at TP-2 at a depth of approximately four feet bgs, and at the conclusion of testing, the measured rate was 29.0 inches per hour (in/hr).

Because the infiltration rate obtained from in-situ testing is a short-term rate, correction factors must be applied to determine a long-term design rate. The correction factors outlined below were determined in accordance with Table III-3.3.1 of the 2014 Manual. The correction factors, along with the measured infiltration rate, were incorporated into the following equation:

$K_{sat}design = K_{sat}initial \times CF_{v} \times CF_{t} \times CF_{m}$

•	Short-term infiltration rate (Ksat initial)	29.0 in/hr
•	Site variability	$CF_v = 0.75$
•	Test method	$CF_{t} = 0.5$
•	Degree of influent control	CF _m = 0.9
•	Long-term infiltration rate (Ksat design)	9.7 in/hr

The long-term infiltration rate is applicable to facilities located in proximity to the infiltration test location (such as the footing drain drywell), as verified by ESNW during plan review. Should a revised location be pursued, ESNW should be contacted to perform additional in-situ testing.

ESNW should be retained to observe the construction of infiltration facilities on the subject site to confirm soil conditions are as anticipated and perform confirmation infiltration testing at the infiltration design depth and location, if required. Supplementary geotechnical recommendations may be provided at the time of construction, where necessary.

Limitations

This letter has been prepared for the exclusive use of RKK Construction, Inc., and its representatives. No warranty, express or implied, is made. This letter was prepared in a manner consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area.

If the assumptions outlined in this letter either change or are incorrect, ESNW must be contacted to review the recommendations and conclusions provided herein. Variations in the soil and groundwater conditions observed at the test sites may exist and may not become evident until construction. ESNW should reevaluate the conclusions in this letter if variations are encountered.

Additional Services

ESNW should have an opportunity to review final designs with respect to the geotechnical recommendations provided in this letter. ESNW should also be retained to provide testing and consultation services during the earthwork phase of construction.

RKK Construction, Inc. August 11, 2020 ES-7397 Page 4

We trust this letter meets your current needs. Please call if you have any questions about this letter or if we can be of further assistance.

Sincerely,

EARTH SOLUTIONS NW, LLC

Adam Z. Shier, L.G. Project Geologist

Keven D. Hoffmann, P.E. Senior Project Manager

Attachments: Plate 1 – Vicinity Map Plate 2 – Subsurface Exploration Plan Hand Auger Boring and Test Pit Logs Grain Size Distribution

Earth Solutions NWLLC SOIL CLASSIFICATION CHART

м	MAJOR DIVISIONS				TYPICAL	
141			GRAPH	LETTER	DESCRIPTIONS	
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	
LARGER THAN NO. 200 SIEVE SIZE SIZE	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES		
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE SILTS GRAINED CLAYS SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS	
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	
HI	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	

DUAL SYMBOLS are used to indicate borderline soil classifications.

The discussion in the text of this report is necessary for a proper understanding of the nature of the material presented in the attached logs.

	Eart Soluti NW	Earth Soluti 15365 N.E. Redmond, V Telephone: Fax: 425-4	ons N 90th \$ Washi 425-4 49-47	W, LL Street, ngton 449-47 11	C Suite 100 98052 04	BO	RING NUMBER HA-1 PAGE 1 OF 1
PROJE		IBER <u>ES-7397</u>				PROJECT NAME _ Miller Residence	
DATE	STARTE	D 7/13/20	c	OMPL	ETED	GROUND ELEVATION 320 ft	HOLE SIZE
DRILLI	ING CON	TRACTOR ESNW	/ Rep			GROUND WATER LEVELS:	
DRILLI	ING MET					AT TIME OF DRILLING	
LOGG	ED BY _	AZS	c	HECK	ED BY KDH	AT END OF DRILLING	
NOTES	S Surface	ce Conditions: expo	ised so	oil		AFTER DRILLING	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
					Tan silty SAND, m	edium dense, moist	
		MC = 9.90%	SM		-foots		
		MC = 8.30%			3.0		317.0
			SP-		Brown poorly grad	ed SAND with silt, medium dense, moist	
		MC = 5.80%	5101		4.0 Hand auger boring	terminated at 4.0 feet below existing gra	de. No groundwater

encountered during excavation. No caving observed.

ER <u>ES-7397</u> 7/13/20 DNTRACTOR (ETHOD <u>f Topsoil & Sod</u> TESTS MC = 12.30% MC = 2.60% Fines = 1.10%	R <u>ES-7397</u> 7/13/20 TRACTOR <u>Cli</u> HOD TESTS IC = 12.30% AC = 2.60% nes = 1.10%	COMPLE ient Provided CHECKEI ": grass OHEVE SM TPSL 200 SM SM SM	TED 7/13/20 D BY KDH 5 Dark brown TC Tan silty SANE 5 Gray well-grad [USDA Classif	PROJECT NAMEMiller Residence GROUND ELEVATION _320.5 ft TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION DPSOIL D, medium dense, moist led GRAVEL with sand, medium dense, moist iccation: extremely gravelly coarse SAND]	
	7/13/20 TRACTOR _Cli HOD Topsoil & Sod 6 TESTS IC = 12.30% IC = 2.60% nes = 1.10%	COMPLE ient Provided CHECKEI ": grass SM 200 CHECKEI CHECKE	TED 7/13/20 D BY KDH 5 Dark brown TC Tan silty SANE 5 Gray well-grad [USDA Classif	GROUND ELEVATION <u>320.5 ft</u> TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION DPSOIL D, medium dense, moist ication: extremely gravelly coarse SAND]	
DNTRACTOR	TRACTOR _Cli HOD Topsoil & Sod 6 TESTS IC = 12.30% IC = 12.30%	GW	D BY <u>KDH</u> <u>5</u> Dark brown TC Tan silty SANE <u>5</u> Gray well-grad [USDA Classif	GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION DPSOIL D, medium dense, moist DPSOIL D, medium dense, moist led GRAVEL with sand, medium dense, moist lication: extremely gravelly coarse SAND]	320.0
ETHOD ZS f Topsoil & Sod TESTS MC = 12.30% MC = 2.60% Fines = 1.10% MC = 5.50%	HOD Tests IC = 12.30% IC = 2.60% nes = 1.10%	CHECKEI	D BY <u>KDH</u> <u>5</u> Dark brown TC Tan silty SANE 5 Gray well-grad [USDA Classif	AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION OPSOIL DPSOIL D, medium dense, moist led GRAVEL with sand, medium dense, moist ication: extremely gravelly coarse SAND]	320.0
ZS <u>ff Topsoil & Sod</u> TESTS MC = 12.30% MC = 2.60% Fines = 1.10% <u>MC = 5.50%</u>	TESTS IC = 12.30% IC = 2.60% nes = 1.10%	GW	D BY <u>KDH</u> <u>5</u> Dark brown TC Tan silty SANE <u>5</u> Gray well-grad [USDA Classif	AT END OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION DPSOIL D, medium dense, moist led GRAVEL with sand, medium dense, moist ication: extremely gravelly coarse SAND]	320.0
<u>MC = 12.30%</u> MC = 12.30% MC = 1.10% MC = 5.50%	TESTS IC = 12.30% IC = 2.60% nes = 1.10%	SM Gw	5 Dark brown TC Tan silty SANI 5 Gray well-grad [USDA Classif	AFTER EXCAVATION MATERIAL DESCRIPTION DPSOIL D, medium dense, moist led GRAVEL with sand, medium dense, moist ication: extremely gravelly coarse SAND]	320.0
TESTS MC = 12.30% MC = 2.60% Fines = 1.10% MC = 5.50%	TESTS IC = 12.30% IC = 2.60% nes = 1.10%	SM Crock of the second	5 Dark brown TC Tan silty SANI 5 Gray well-grad [USDA Classif	DPSOIL D, medium dense, moist led GRAVEL with sand, medium dense, moist ication: extremely gravelly coarse SAND]	320.0
MC = 12.30% MC = 2.60% Fines = 1.10% MC = 5.50%	IC = 12.30% IC = 2.60% nes = 1.10%	SM 3.6	5 Dark brown TC Tan silty SANI 5 Gray well-grad [USDA Classif	DPSOIL D, medium dense, moist led GRAVEL with sand, medium dense, moist ication: extremely gravelly coarse SAND]	<u>320.0</u> <u>317.0</u>
MC = 12.30% MC = 2.60% Fines = 1.10% MC = 5.50%	IC = 12.30% IC = 2.60% nes = 1.10%	SM	Tan silty SANI 5 Gray well-grad [USDA Classif	D, medium dense, moist led GRAVEL with sand, medium dense, moist ïcation: extremely gravelly coarse SAND]	<u>317.0</u>
MC = 2.60% Fines = 1.10% MC = 5.50%	<i>I</i> C = 2.60% nes = 1.10%	SM 3.6	5 Gray well-grad [USDA Classif	led GRAVEL with sand, medium dense, moist ication: extremely gravelly coarse SAND]	<u>317.0</u>
MC = 2.60% Fines = 1.10% MC = 5.50%	//C = 2.60% nes = 1.10%	GW	5 Gray well-grad [USDA Classif	led GRAVEL with sand, medium dense, moist ication: extremely gravelly coarse SAND]	317.0
MC = 2.60% Fines = 1.10% MC = 5.50%	ИС = 2.60% nes = 1.10%	GW	Gray well-grad [USDA Classif	led GRAVEL with sand, medium dense, moist ication: extremely gravelly coarse SAND]	
MC = 5.50%	nes = 1.10%	GW	USDA Classif	ication: extremely gravelly coarse SAND]	
_MC = 5.50%		GW			
MC = 5.50%					
MC = 5.50%					
MC = 5.50%					
	/IC = 5.50%	7.0) Test nit termin	ated at 7.0 feet below existing grade. No groundwater encountered during	313.5

€ Ea Solu E NV	tions fuc Fax: 425-4	ions 1 90th Wash 425- 49-47	NW, LL Street hington -449-4 ⁻ 711	C Suite 100 98052 04	TEST PIT NUMBER TP PAGE 1 OF	-2
PROJECT NU DATE START EXCAVATION EXCAVATION LOGGED BY	MBER <u>ES-7397</u> ED <u>7/13/20</u> CONTRACTOR <u>CI</u> METHOD AZS	ient P	COMP Provide CHEC	ETED <u>7/13/20</u> 3 3 3 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6	ROJECT NAME Miller Residence GROUND ELEVATION 319 ft TEST PIT SIZE GROUND WATER LEVELS: TIME OF EXCAVATION AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION	
DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
	MC = 9.00%	SM SM		Brown silty SAND, loo <u>1.0</u> -brick, roots Tan silty SAND, med -roots	ose to medium dense, moist (Fill)	<u>318.0</u>
 5 	MC = 2.30% Fines = 1.90%	GW		4.0 Gray well-graded GR -infiltration test at 4.5 [USDA Classification:	AVEL with sand, medium dense, moist extremely gravelly coarse SAND]	<u>315.0</u>
	MC = 3.00% Fines = 0.60%	GP		7.0 Gray poorly graded G 8.0 [USDA Classification: Test pit terminated at excavation. No caving	RAVEL with sand, medium dense, moist extremely gravelly coarse SAND] 8.0 feet below existing grade. No groundwater encountered during g observed.	<u>312.0</u> <u>311.0</u>

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

